How to Build Clinical-Grade Wearable Data Pipelines with Real-Time Analytics
Comprehensive guide to building production-ready wearable data pipelines with streaming analytics, anomaly detection, predictive algorithms, and clinical alerting for remote patient monitoring programs.
Introduction: The Clinical-Grade Data Pipeline Challenge
Consumer wearable devices generate continuous streams of physiological data, but transforming this raw data into clinically actionable insights requires sophisticated data engineering. A clinical-grade wearable data pipeline must handle real-time streaming, perform data quality validation, detect anomalies, run predictive algorithms, generate clinical alerts, and maintain comprehensive audit trailsβall while meeting FDA software validation requirements and HIPAA security standards.
This guide walks you through building a production-ready wearable data pipeline capable of processing millions of data points daily with sub-second latency for critical alerts.
Why Build a Real-Time Wearable Pipeline?
Traditional batch processing (syncing data once daily) is insufficient for clinical applications that require immediate intervention:
Use Cases Requiring Real-Time Processing:
- Sepsis detection: Predictive algorithms analyzing vital sign trends need 15-minute windows
- Cardiac arrest prediction: Early warning scores require continuous heart rate and respiratory rate streaming
- Post-surgical monitoring: Immediate alerts for hemorrhage, infection, or respiratory compromise
- Chronic disease management: Real-time feedback loops for diabetes, heart failure, hypertension
- Clinical trials: Continuous safety monitoring with automated adverse event detection
However, building such a system traditionally requires 9-18 months and a specialized team. JustCopy.ai reduces this to days. With AI-powered code generation, you can clone proven real-time analytics pipelines and customize them to your clinical algorithms.
System Architecture Overview
High-Level Pipeline Architecture
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Data Sources β
β ββββββββββββ ββββββββββββ ββββββββββββ ββββββββββββ β
β β Fitbit β β Apple β β Google β β Medical β β
β β API β βHealthKit β β Fit β β Devices β β
β βββββββ¬βββββ βββββββ¬βββββ βββββββ¬βββββ βββββββ¬βββββ β
ββββββββββΌββββββββββββββΌββββββββββββββΌββββββββββββββΌβββββββββββ
β β β β
βββββββββββββββ΄ββββββββββββββ΄ββββββββββββββ
β
βββββββββββββββββΌβββββββββββββββββ
β API Gateway / Load Balancer β
β - Rate limiting β
β - Authentication β
β - Request routing β
βββββββββββββββββ¬βββββββββββββββββ
β
βββββββββββββββββΌβββββββββββββββββ
β Data Ingestion Service β
β - Validation β
β - Normalization β
β - Deduplication β
βββββββββββββββββ¬βββββββββββββββββ
β
βββββββββββββββββΌβββββββββββββββββ
β Message Queue (Kafka/RabbitMQ)β
β - Buffering β
β - Guaranteed delivery β
β - Topic partitioning β
βββββββββββββββββ¬βββββββββββββββββ
β
βββββββββββββββββ΄βββββββββββββββββ
β β
βΌ βΌ
ββββββββββββββββββ ββββββββββββββββββββ
β Stream β β Batch β
β Processing β β Processing β
β (Real-time) β β (Historical) β
β - Kafka Streamsβ β - Apache Spark β
β - Flink β β - Airflow β
ββββββββββ¬ββββββββ ββββββββββ¬ββββββββββ
β β
βΌ βΌ
ββββββββββββββββββ ββββββββββββββββββββ
β Time-Series DB β β Data Warehouse β
β (InfluxDB, β β (PostgreSQL, β
β TimescaleDB) β β BigQuery) β
ββββββββββ¬ββββββββ ββββββββββ¬ββββββββββ
β β
ββββββββββββββββββ¬ββββββββββββββββ
β
ββββββββββββββββββΌβββββββββββββββββ
β Analytics & ML Engine β
β - Anomaly detection β
β - Predictive models β
β - Risk scoring β
ββββββββββββββββββ¬βββββββββββββββββ
β
ββββββββββββββββββΌβββββββββββββββββ
β Clinical Alerting System β
β - Rule engine β
β - Alert routing β
β - Escalation logic β
ββββββββββββββββββ¬βββββββββββββββββ
β
ββββββββββββββββββΌβββββββββββββββββ
β EHR Integration (FHIR) β
β - Epic, Cerner, Custom β
βββββββββββββββββββββββββββββββββββ
JustCopy.ai provides complete implementations of this entire architecture with all components integrated, tested, and optimized for healthcare workloads.
Step 1: Set Up Streaming Infrastructure
Technology Stack Selection
Message Queue / Event Streaming:
- Apache Kafka: Industry standard, handles millions of events/sec, fault-tolerant
- RabbitMQ: Simpler setup, good for moderate throughput
- AWS Kinesis: Managed service, seamless AWS integration
- Google Pub/Sub: Managed, auto-scaling, GCP integration
Stream Processing:
- Apache Flink: Complex event processing, exactly-once semantics
- Kafka Streams: Lightweight, built on Kafka, stateful processing
- Apache Spark Streaming: Batch + streaming, MLlib integration
- AWS Lambda + Kinesis: Serverless, auto-scaling
Time-Series Database:
- InfluxDB: Purpose-built for time-series, excellent compression
- TimescaleDB: PostgreSQL extension, SQL queries on time-series
- Prometheus: Monitoring-focused, good for metrics
- AWS Timestream: Managed, serverless time-series DB
Apache Kafka Setup
# Docker Compose for Kafka development environment
version: '3.8'
services:
zookeeper:
image: confluentinc/cp-zookeeper:7.5.0
environment:
ZOOKEEPER_CLIENT_PORT: 2181
ZOOKEEPER_TICK_TIME: 2000
ports:
- "2181:2181"
kafka:
image: confluentinc/cp-kafka:7.5.0
depends_on:
- zookeeper
ports:
- "9092:9092"
environment:
KAFKA_BROKER_ID: 1
KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://localhost:9092
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
KAFKA_AUTO_CREATE_TOPICS_ENABLE: "true"
kafka-ui:
image: provectuslabs/kafka-ui:latest
ports:
- "8080:8080"
environment:
KAFKA_CLUSTERS_0_NAME: local
KAFKA_CLUSTERS_0_BOOTSTRAPSERVERS: kafka:9092
influxdb:
image: influxdb:2.7
ports:
- "8086:8086"
volumes:
- influxdb-data:/var/lib/influxdb2
environment:
DOCKER_INFLUXDB_INIT_MODE: setup
DOCKER_INFLUXDB_INIT_USERNAME: admin
DOCKER_INFLUXDB_INIT_PASSWORD: adminpassword
DOCKER_INFLUXDB_INIT_ORG: healthcare-org
DOCKER_INFLUXDB_INIT_BUCKET: wearable-data
volumes:
influxdb-data:
Or use JustCopy.ai: Skip infrastructure setup entirely. JustCopy.aiβs AI agents automatically provision Kafka clusters, time-series databases, and stream processing infrastructure on AWS, GCP, or Azure with production-grade configurations.
Step 2: Build Data Ingestion Service
The ingestion service receives wearable data from multiple sources, validates it, and publishes to Kafka topics.
Data Ingestion API
// TypeScript: High-performance data ingestion service
import express from 'express';
import { Kafka, Producer } from 'kafkajs';
import { z } from 'zod'; // Runtime validation library
// Kafka producer setup
const kafka = new Kafka({
clientId: 'wearable-ingestion-service',
brokers: ['kafka:9092']
});
const producer: Producer = kafka.producer({
idempotent: true, // Prevent duplicate messages
maxInFlightRequests: 5,
transactionalId: 'wearable-ingestion-txn'
});
// Data validation schemas
const HeartRateDataSchema = z.object({
patient_id: z.string().uuid(),
device_id: z.string(),
device_type: z.enum(['apple_watch', 'fitbit', 'google_fit', 'garmin']),
timestamp: z.string().datetime(),
heart_rate: z.number().min(30).max(250),
measurement_context: z.enum(['resting', 'active', 'exercise', 'sleep']).optional(),
confidence_level: z.number().min(0).max(1).optional()
});
const ActivityDataSchema = z.object({
patient_id: z.string().uuid(),
device_id: z.string(),
timestamp: z.string().datetime(),
step_count: z.number().int().min(0).max(100000),
distance_meters: z.number().min(0),
active_minutes: z.number().int().min(0),
calories_burned: z.number().min(0)
});
// Express API
const app = express();
app.use(express.json());
/**
* Ingest heart rate data
*/
app.post('/api/v1/ingest/heart-rate', async (req, res) => {
try {
// Validate request body
const data = HeartRateDataSchema.parse(req.body);
// Additional business logic validation
const validation = await validateHeartRateData(data);
if (!validation.valid) {
return res.status(400).json({
error: 'Validation failed',
details: validation.errors
});
}
// Check for duplicates
const isDuplicate = await checkDuplicate(
data.patient_id,
'heart_rate',
data.timestamp,
data.heart_rate
);
if (isDuplicate) {
return res.status(200).json({
message: 'Duplicate data point ignored',
deduplicated: true
});
}
// Enrich data with metadata
const enrichedData = {
...data,
ingestion_timestamp: new Date().toISOString(),
data_source: 'api',
schema_version: '1.0'
};
// Publish to Kafka topic
await producer.send({
topic: 'wearable.heart-rate',
messages: [{
key: data.patient_id, // Partition by patient for ordered processing
value: JSON.stringify(enrichedData),
headers: {
'content-type': 'application/json',
'patient-id': data.patient_id,
'device-type': data.device_type
}
}]
});
res.status(202).json({
message: 'Data accepted for processing',
timestamp: enrichedData.ingestion_timestamp
});
} catch (error) {
if (error instanceof z.ZodError) {
return res.status(400).json({
error: 'Invalid data format',
details: error.errors
});
}
console.error('Ingestion error:', error);
res.status(500).json({ error: 'Internal server error' });
}
});
/**
* Batch ingest endpoint for bulk data
*/
app.post('/api/v1/ingest/batch', async (req, res) => {
const { data_points } = req.body;
if (!Array.isArray(data_points) || data_points.length === 0) {
return res.status(400).json({ error: 'data_points must be non-empty array' });
}
const results = {
accepted: 0,
rejected: 0,
duplicates: 0,
errors: []
};
// Process in batches for performance
const messages = [];
for (const point of data_points) {
try {
// Validate based on data type
const dataType = point.data_type;
let validated;
switch (dataType) {
case 'heart_rate':
validated = HeartRateDataSchema.parse(point);
break;
case 'activity':
validated = ActivityDataSchema.parse(point);
break;
default:
throw new Error(`Unsupported data type: ${dataType}`);
}
// Check duplicates
const isDuplicate = await checkDuplicate(
validated.patient_id,
dataType,
validated.timestamp,
validated[dataType === 'heart_rate' ? 'heart_rate' : 'step_count']
);
if (isDuplicate) {
results.duplicates++;
continue;
}
// Add to batch
messages.push({
topic: `wearable.${dataType}`,
messages: [{
key: validated.patient_id,
value: JSON.stringify({
...validated,
ingestion_timestamp: new Date().toISOString()
})
}]
});
results.accepted++;
} catch (error) {
results.rejected++;
results.errors.push({
data: point,
error: error.message
});
}
}
// Send batch to Kafka
if (messages.length > 0) {
await producer.sendBatch({
topicMessages: messages
});
}
res.status(200).json(results);
});
// Start server
async function start() {
await producer.connect();
app.listen(3000, () => {
console.log('Wearable ingestion service listening on port 3000');
});
}
start();
Data Validation Logic
// Advanced validation with clinical rules
interface ValidationResult {
valid: boolean;
errors: string[];
warnings: string[];
metadata: {
clinical_significance?: string;
alert_required?: boolean;
};
}
async function validateHeartRateData(data: any): Promise<ValidationResult> {
const result: ValidationResult = {
valid: true,
errors: [],
warnings: [],
metadata: {}
};
// Get patient context for personalized validation
const patient = await getPatientContext(data.patient_id);
// Biologically plausible range
if (data.heart_rate < 30 || data.heart_rate > 250) {
result.valid = false;
result.errors.push(`Heart rate ${data.heart_rate} outside plausible range (30-250)`);
return result;
}
// Context-specific validation
if (data.measurement_context === 'resting') {
// Bradycardia
if (data.heart_rate < 50 && !patient.is_athlete) {
result.warnings.push('Resting bradycardia detected');
result.metadata.clinical_significance = 'moderate';
}
// Tachycardia
if (data.heart_rate > 100) {
result.warnings.push('Resting tachycardia detected');
result.metadata.clinical_significance = 'moderate';
result.metadata.alert_required = true;
}
// Critical values
if (data.heart_rate < 40 || data.heart_rate > 130) {
result.metadata.clinical_significance = 'high';
result.metadata.alert_required = true;
}
}
// Check for sudden changes from baseline
const recentHR = await getRecentHeartRate(data.patient_id, '1h');
if (recentHR) {
const change = Math.abs(data.heart_rate - recentHR.average);
if (change > 40) {
result.warnings.push(`Sudden heart rate change: ${change} bpm in 1 hour`);
result.metadata.alert_required = true;
}
}
return result;
}
Step 3: Implement Stream Processing
Process real-time data streams to calculate rolling statistics, detect anomalies, and trigger alerts.
Kafka Streams Processing
// Java: Kafka Streams for real-time wearable data processing
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.kstream.*;
import org.apache.kafka.streams.state.Stores;
import java.time.Duration;
public class WearableStreamProcessor {
public static void main(String[] args) {
StreamsBuilder builder = new StreamsBuilder();
// Input stream: Raw heart rate data
KStream<String, HeartRateData> heartRateStream = builder.stream(
"wearable.heart-rate",
Consumed.with(Serdes.String(), heartRateDataSerde())
);
// Calculate rolling average over 5-minute windows
KTable<Windowed<String>, Double> rollingAverage = heartRateStream
.groupByKey()
.windowedBy(TimeWindows.ofSizeWithNoGrace(Duration.ofMinutes(5)))
.aggregate(
HeartRateAggregate::new,
(patientId, newData, aggregate) -> {
aggregate.addDataPoint(newData.getHeartRate());
return aggregate;
},
Materialized.with(Serdes.String(), heartRateAggregateSerde())
)
.mapValues(aggregate -> aggregate.getAverage());
// Detect anomalies: Heart rate deviation from rolling average
heartRateStream
.join(
rollingAverage,
(currentHR, avgHR) -> new AnomalyCheck(currentHR, avgHR),
JoinWindows.ofTimeDifferenceWithNoGrace(Duration.ofMinutes(5))
)
.filter((key, anomalyCheck) -> anomalyCheck.isAnomaly())
.to("wearable.heart-rate.anomalies");
// Calculate heart rate variability (HRV)
KStream<String, HeartRateVariability> hrvStream = heartRateStream
.groupByKey()
.windowedBy(TimeWindows.ofSizeWithNoGrace(Duration.ofMinutes(5)))
.aggregate(
HRVCalculator::new,
(patientId, newData, calculator) -> {
calculator.addRRInterval(60000.0 / newData.getHeartRate());
return calculator;
},
Materialized.with(Serdes.String(), hrvCalculatorSerde())
)
.toStream()
.mapValues(calculator -> calculator.calculateHRV());
// Publish HRV metrics
hrvStream.to("wearable.hrv.metrics");
// Start streams application
KafkaStreams streams = new KafkaStreams(builder.build(), getStreamsConfig());
streams.start();
// Graceful shutdown
Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
}
static class HeartRateAggregate {
private List<Double> dataPoints = new ArrayList<>();
void addDataPoint(double hr) {
dataPoints.add(hr);
}
double getAverage() {
return dataPoints.stream()
.mapToDouble(Double::doubleValue)
.average()
.orElse(0.0);
}
double getStdDev() {
double avg = getAverage();
double variance = dataPoints.stream()
.mapToDouble(hr -> Math.pow(hr - avg, 2))
.average()
.orElse(0.0);
return Math.sqrt(variance);
}
}
static class AnomalyCheck {
private HeartRateData currentData;
private double rollingAverage;
AnomalyCheck(HeartRateData currentData, double rollingAverage) {
this.currentData = currentData;
this.rollingAverage = rollingAverage;
}
boolean isAnomaly() {
double deviation = Math.abs(currentData.getHeartRate() - rollingAverage);
// Flag if deviation > 30 bpm from 5-min rolling average
return deviation > 30;
}
}
}
Apache Flink Alternative
# Python: Apache Flink for complex event processing
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.datastream.connectors import FlinkKafkaConsumer, FlinkKafkaProducer
from pyflink.common.serialization import SimpleStringSchema
from pyflink.datastream.window import TumblingEventTimeWindows
from pyflink.common.time import Time
import json
def process_wearable_stream():
env = StreamExecutionEnvironment.get_execution_environment()
env.set_parallelism(4)
# Kafka consumer for heart rate data
kafka_consumer = FlinkKafkaConsumer(
topics='wearable.heart-rate',
deserialization_schema=SimpleStringSchema(),
properties={
'bootstrap.servers': 'kafka:9092',
'group.id': 'wearable-processor'
}
)
# Read stream
heart_rate_stream = env.add_source(kafka_consumer)
# Parse JSON and extract fields
parsed_stream = heart_rate_stream.map(lambda x: json.loads(x))
# Detect tachycardia patterns (HR > 100 for 5+ minutes)
tachycardia_alerts = (
parsed_stream
.key_by(lambda x: x['patient_id'])
.window(TumblingEventTimeWindows.of(Time.minutes(5)))
.process(TachycardiaDetector())
)
# Publish alerts to Kafka
kafka_producer = FlinkKafkaProducer(
topic='clinical.alerts.tachycardia',
serialization_schema=SimpleStringSchema(),
producer_config={
'bootstrap.servers': 'kafka:9092'
}
)
tachycardia_alerts.add_sink(kafka_producer)
env.execute('Wearable Stream Processing')
class TachycardiaDetector(ProcessWindowFunction):
def process(self, key, context, elements):
hr_readings = [e['heart_rate'] for e in elements]
# Check if all readings in window > 100 bpm
if len(hr_readings) >= 5 and all(hr > 100 for hr in hr_readings):
yield json.dumps({
'patient_id': key,
'alert_type': 'tachycardia',
'severity': 'moderate',
'duration_minutes': 5,
'average_hr': sum(hr_readings) / len(hr_readings),
'timestamp': context.window().end()
})
JustCopy.aiβs stream processing templates include pre-built Kafka Streams and Flink applications for common clinical algorithms (sepsis detection, cardiac event prediction, medication adherence monitoring, etc.), ready to deploy and customize.
Step 4: Build Predictive Analytics Engine
Implement machine learning models to predict clinical events before they occur.
Sepsis Prediction Model
# Python: Sepsis prediction using real-time wearable data
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from influxdb_client import InfluxDBClient
import joblib
class SepsisPredictor:
def __init__(self, model_path='models/sepsis_rf_model.pkl'):
self.model = joblib.load(model_path)
self.influx_client = InfluxDBClient(
url="http://influxdb:8086",
token="your-token",
org="healthcare-org"
)
def extract_features(self, patient_id: str) -> dict:
"""Extract features from last 6 hours of wearable data"""
query = f'''
from(bucket: "wearable-data")
|> range(start: -6h)
|> filter(fn: (r) => r["patient_id"] == "{patient_id}")
|> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
'''
# Query InfluxDB for patient data
result = self.influx_client.query_api().query_data_frame(query)
if result.empty:
return None
# Calculate features
features = {
# Heart rate features
'hr_mean_6h': result['heart_rate'].mean(),
'hr_std_6h': result['heart_rate'].std(),
'hr_max_6h': result['heart_rate'].max(),
'hr_min_6h': result['heart_rate'].min(),
'hr_trend_6h': self._calculate_trend(result['heart_rate']),
# Respiratory rate features
'rr_mean_6h': result['respiratory_rate'].mean(),
'rr_std_6h': result['respiratory_rate'].std(),
# Temperature features
'temp_mean_6h': result['temperature'].mean(),
'temp_max_6h': result['temperature'].max(),
'temp_trend_6h': self._calculate_trend(result['temperature']),
# Activity features
'activity_mean_6h': result['activity_level'].mean(),
'activity_std_6h': result['activity_level'].std(),
# SpO2 features
'spo2_mean_6h': result['spo2'].mean(),
'spo2_min_6h': result['spo2'].min(),
# Heart rate variability
'hrv_mean_6h': result['hrv'].mean(),
'hrv_std_6h': result['hrv'].std()
}
return features
def predict_sepsis_risk(self, patient_id: str) -> dict:
"""Predict sepsis risk score (0-100)"""
features = self.extract_features(patient_id)
if not features:
return {
'patient_id': patient_id,
'risk_score': None,
'error': 'Insufficient data'
}
# Convert to DataFrame for model input
feature_df = pd.DataFrame([features])
# Predict probability
sepsis_probability = self.model.predict_proba(feature_df)[0][1]
risk_score = int(sepsis_probability * 100)
# Determine risk category
if risk_score < 25:
category = 'low'
elif risk_score < 50:
category = 'moderate'
elif risk_score < 75:
category = 'high'
else:
category = 'critical'
return {
'patient_id': patient_id,
'risk_score': risk_score,
'category': category,
'confidence': sepsis_probability,
'contributing_factors': self._identify_factors(features),
'timestamp': pd.Timestamp.now().isoformat()
}
def _calculate_trend(self, series: pd.Series) -> float:
"""Calculate linear trend coefficient"""
if len(series) < 2:
return 0.0
x = np.arange(len(series))
coeffs = np.polyfit(x, series, 1)
return coeffs[0] # Slope
def _identify_factors(self, features: dict) -> list:
"""Identify key contributing factors to sepsis risk"""
factors = []
if features['hr_mean_6h'] > 110:
factors.append('Elevated heart rate')
if features['temp_max_6h'] > 38.3:
factors.append('Fever detected')
if features['rr_mean_6h'] > 20:
factors.append('Elevated respiratory rate')
if features['spo2_min_6h'] < 92:
factors.append('Low oxygen saturation')
if features['hrv_mean_6h'] < 30:
factors.append('Decreased heart rate variability')
return factors
# Real-time prediction service
def continuous_sepsis_monitoring():
predictor = SepsisPredictor()
# Get all ICU patients with wearable monitoring
patients = get_monitored_patients()
for patient in patients:
prediction = predictor.predict_sepsis_risk(patient['id'])
if prediction['risk_score'] and prediction['risk_score'] > 50:
# Trigger clinical alert
send_sepsis_alert(prediction)
# Log prediction to database
store_prediction(prediction)
# Run every 15 minutes
schedule.every(15).minutes.do(continuous_sepsis_monitoring)
Step 5: Implement Clinical Alerting System
Transform predictions into actionable clinical alerts with proper escalation.
Alert Engine
// TypeScript: Clinical alert engine with escalation logic
import { Kafka } from 'kafkajs';
import twilio from 'twilio';
import nodemailer from 'nodemailer';
interface ClinicalAlert {
alert_id: string;
patient_id: string;
alert_type: 'sepsis_risk' | 'cardiac_event' | 'respiratory_decline' | 'medication_adherence';
severity: 'low' | 'moderate' | 'high' | 'critical';
risk_score: number;
contributing_factors: string[];
timestamp: string;
requires_immediate_action: boolean;
}
interface AlertRecipient {
role: 'nurse' | 'physician' | 'rapid_response_team';
name: string;
phone: string;
email: string;
sms_enabled: boolean;
}
class ClinicalAlertingSystem {
private kafka: Kafka;
private twilioClient: twilio.Twilio;
private emailClient: nodemailer.Transporter;
constructor() {
this.kafka = new Kafka({
clientId: 'alert-engine',
brokers: ['kafka:9092']
});
this.twilioClient = twilio(
process.env.TWILIO_ACCOUNT_SID,
process.env.TWILIO_AUTH_TOKEN
);
this.emailClient = nodemailer.createTransport({
host: process.env.SMTP_HOST,
port: 587,
auth: {
user: process.env.SMTP_USER,
pass: process.env.SMTP_PASS
}
});
}
async processAlert(alert: ClinicalAlert): Promise<void> {
console.log(`Processing alert ${alert.alert_id} for patient ${alert.patient_id}`);
// Determine alert routing based on severity
const recipients = await this.getAlertRecipients(alert);
// Send alerts via appropriate channels
await Promise.all([
this.sendEHRAlert(alert),
this.sendMobileNotifications(alert, recipients),
this.logAlert(alert)
]);
// Critical alerts require escalation
if (alert.severity === 'critical') {
await this.escalateAlert(alert, recipients);
}
// Track alert acknowledgment
await this.trackAlertAcknowledgment(alert);
}
async getAlertRecipients(alert: ClinicalAlert): Promise<AlertRecipient[]> {
// Get patient's care team
const patient = await db.patients.findById(alert.patient_id);
const careTeam = await db.careTeam.find({ patient_id: alert.patient_id });
const recipients: AlertRecipient[] = [];
// Always notify assigned nurse
if (patient.assigned_nurse_id) {
const nurse = await db.staff.findById(patient.assigned_nurse_id);
recipients.push({
role: 'nurse',
name: nurse.name,
phone: nurse.phone,
email: nurse.email,
sms_enabled: nurse.preferences.sms_alerts
});
}
// Notify physician for high/critical alerts
if (alert.severity === 'high' || alert.severity === 'critical') {
if (patient.attending_physician_id) {
const physician = await db.staff.findById(patient.attending_physician_id);
recipients.push({
role: 'physician',
name: physician.name,
phone: physician.phone,
email: physician.email,
sms_enabled: physician.preferences.sms_alerts
});
}
}
// Activate rapid response team for critical alerts
if (alert.severity === 'critical') {
const rrt = await db.rapidResponseTeam.getOnCall();
recipients.push(...rrt);
}
return recipients;
}
async sendMobileNotifications(
alert: ClinicalAlert,
recipients: AlertRecipient[]
): Promise<void> {
const message = this.formatAlertMessage(alert);
for (const recipient of recipients) {
// Send SMS if enabled
if (recipient.sms_enabled) {
await this.twilioClient.messages.create({
body: message,
from: process.env.TWILIO_PHONE_NUMBER,
to: recipient.phone
});
}
// Send email
await this.emailClient.sendMail({
from: 'Clinical Alerts <alerts@hospital.org>',
to: recipient.email,
subject: `[${alert.severity.toUpperCase()}] ${alert.alert_type} - Patient ${alert.patient_id}`,
html: this.formatAlertEmail(alert, recipient)
});
// Send push notification to mobile app
await this.sendPushNotification(recipient, alert);
}
}
async sendEHRAlert(alert: ClinicalAlert): Promise<void> {
// Post alert to EHR inbox via FHIR Communication resource
const fhirCommunication = {
resourceType: 'Communication',
status: 'in-progress',
category: [{
coding: [{
system: 'http://terminology.hl7.org/CodeSystem/communication-category',
code: 'alert',
display: 'Alert'
}]
}],
priority: this.mapSeverityToPriority(alert.severity),
subject: {
reference: `Patient/${alert.patient_id}`
},
sent: new Date().toISOString(),
payload: [{
contentString: this.formatAlertMessage(alert)
}],
note: [{
text: `Risk Score: ${alert.risk_score}/100\nFactors: ${alert.contributing_factors.join(', ')}`
}]
};
await fhirClient.create({
resourceType: 'Communication',
body: fhirCommunication
});
}
async escalateAlert(
alert: ClinicalAlert,
recipients: AlertRecipient[]
): Promise<void> {
// Wait 5 minutes for acknowledgment
await this.sleep(5 * 60 * 1000);
const acknowledged = await this.isAlertAcknowledged(alert.alert_id);
if (!acknowledged) {
console.log(`Alert ${alert.alert_id} not acknowledged, escalating...`);
// Page charge nurse
const chargeNurse = await db.staff.getChargeNurse();
await this.sendUrgentPage(chargeNurse, alert);
// Escalate to medical director after 10 more minutes
setTimeout(async () => {
const stillUnacknowledged = await this.isAlertAcknowledged(alert.alert_id);
if (stillUnacknowledged) {
const medicalDirector = await db.staff.getMedicalDirector();
await this.sendUrgentPage(medicalDirector, alert);
}
}, 10 * 60 * 1000);
}
}
formatAlertMessage(alert: ClinicalAlert): string {
return `
π¨ ${alert.severity.toUpperCase()} ALERT
Patient: ${alert.patient_id}
Type: ${alert.alert_type.replace(/_/g, ' ')}
Risk Score: ${alert.risk_score}/100
Contributing Factors:
${alert.contributing_factors.map(f => `β’ ${f}`).join('\n')}
Action Required: ${alert.requires_immediate_action ? 'IMMEDIATE' : 'Assess within 30 minutes'}
`.trim();
}
}
// Kafka consumer for processing alerts
async function startAlertProcessor() {
const alertSystem = new ClinicalAlertingSystem();
const kafka = new Kafka({ clientId: 'alert-processor', brokers: ['kafka:9092'] });
const consumer = kafka.consumer({ groupId: 'clinical-alerts' });
await consumer.connect();
await consumer.subscribe({ topic: 'clinical.alerts.*', fromBeginning: false });
await consumer.run({
eachMessage: async ({ topic, partition, message }) => {
const alert: ClinicalAlert = JSON.parse(message.value.toString());
await alertSystem.processAlert(alert);
}
});
}
startAlertProcessor();
Step 6: FDA Validation and Clinical Testing
For clinical use, your wearable data pipeline must meet FDA software validation requirements.
Validation Documentation
Required Documentation:
- Software Design Specification: Architecture diagrams, data flow, algorithm descriptions
- Risk Analysis: FMEA (Failure Mode and Effects Analysis)
- Verification Testing: Unit tests, integration tests proving software works as designed
- Validation Testing: Clinical testing proving software meets user needs
- Traceability Matrix: Requirements β Design β Tests β Results
Example Verification Test Suite
// Jest: Automated testing for clinical algorithms
describe('Sepsis Risk Prediction', () => {
let predictor: SepsisPredictor;
beforeAll(() => {
predictor = new SepsisPredictor();
});
test('should return high risk for SIRS criteria', async () => {
const mockData = {
patient_id: 'test-123',
heart_rate_6h_avg: 115, // Tachycardia
respiratory_rate_6h_avg: 24, // Tachypnea
temperature_6h_avg: 38.5, // Fever
wbc_count: 14000 // Leukocytosis
};
const result = await predictor.predict(mockData);
expect(result.risk_score).toBeGreaterThan(75);
expect(result.category).toBe('high');
});
test('should not generate false positives for athletes', async () => {
const mockData = {
patient_id: 'athlete-456',
heart_rate_6h_avg: 45, // Athletic bradycardia
respiratory_rate_6h_avg: 12,
temperature_6h_avg: 37.0,
patient_context: { is_athlete: true }
};
const result = await predictor.predict(mockData);
expect(result.risk_score).toBeLessThan(25);
});
test('should handle missing data gracefully', async () => {
const result = await predictor.predict({ patient_id: 'no-data' });
expect(result.error).toBe('Insufficient data');
expect(result.risk_score).toBeNull();
});
});
How JustCopy.ai Can Help
Building a clinical-grade wearable data pipeline requires expertise in distributed systems, stream processing, machine learning, healthcare regulations, and months of development time.
JustCopy.ai compresses this timeline from months to days. With specialized AI agents, you can:
β Clone production-ready data pipeline templates with Kafka, Flink, InfluxDB, and ML models β Customize clinical algorithms for your specific use case (sepsis, cardiac events, medication adherence, etc.) β Deploy to AWS/GCP/Azure with automated infrastructure provisioning β Validate with auto-generated test suites meeting FDA requirements β Monitor with real-time dashboards, alerting, and performance analytics β Scale automatically to handle millions of data points per day
JustCopy.aiβs wearable analytics templates include:
- Complete Kafka/Flink streaming infrastructure
- Time-series database optimization for wearable data
- Pre-trained ML models for sepsis, cardiac arrest, fall detection
- Clinical alerting engine with EHR integration
- FDA validation documentation templates
- HIPAA-compliant security architecture
- Real-time analytics dashboards for clinicians
Ready to build your clinical-grade wearable data pipeline? Start with JustCopy.ai and deploy a production-ready real-time analytics platform in days, not months.
Additional Resources
Build This with JustCopy.ai
Skip months of development with 10 specialized AI agents. JustCopy.ai can copy, customize, and deploy this application instantly. Our AI agents write code, run tests, handle deployment, and monitor your applicationβall following healthcare industry best practices and HIPAA compliance standards.